初探深度优先搜索(DFS)和广度优先搜索(BFS)
深度优先搜索(DFS,Depth First Search)和广度优先搜索(BFS,Breadth First Search),我从来没弄明白过。是时候努力去好好理解一下了。
B 站找了两个视频看,这篇文章是笔记。
所以图直观还是直接看视频吧...
深度优先搜索
DFS 的搜索过程要结合 栈 来理解,实际上这个过程就是在对一个 栈 在操作。比如我们有这样一张图:
graph TB
1((1))===2((2))===4((3))===8((4))===5((5))
2((2))===5((5))
1((1))===3((8))===6((6))===8((4))
3((8))===7((9))
6((6))===9((7))
我们建立一个栈,然后开始遍历上边这张图。我们做以下约定:
- 已经入栈的节点要被标记为已经遍历;
- 起始节点为 1,将其入栈,作为最初的栈顶;
- 查看与当前栈顶元素相连并且未被标记的节点,将其入栈;
- 如果有多个满足 3 中条件的元素,节点序号较小的优先入栈;
- 当栈顶元素没有相连节点或所有相连节点均已经被标记后,将其出栈。
所以对于上边的图,我们依次进行下面的操作:
- 节点 1 入栈,并将其标记;
- 查找与当前栈顶元素节点 1 相连并且没有标记的元素,有节点 2 和节点 8,节点 2 优先入栈,将节点 2 标记;
- 查找与当前栈顶元素节点 2 相连并且没有标记的元素,有节点 3 和节点 5,节点 3 优先入栈,将节点 3 标记;
- 查找与当前栈顶元素节点 3 相连并且没有标记的元素,只有节点 4,节点 4 入栈,并将其标记;
- 查找与当前栈顶元素节点 4 相连并且没有标记的元素,有节点 5 和 节点 6 ,节点 5 优先入栈,将节点 5 标记;
- 查找与当前栈顶元素节点 5 相连的元素,有节点 2 和节点 4,但均已被标记,所以当前栈顶节点 5 出栈;
- 查找与当前栈顶元素节点 4 相连并且没有标记的元素,只有节点 6,节点 6 入栈,并将其标记;
- 查找与当前栈顶元素节点 6 相连并且没有标记的元素,有节点 7 和节点 8,节点 7 优先入栈,将节点 7 标记;
- 查找与当前栈顶元素节点 7 相连的元素,没有这样的元素,节点 7 出栈;
- 查找与当前栈顶元素节点 6 相连并且没有标记的元素,只有节点 8,节点 8 入栈,并将其标记;
- 查找与当前栈顶元素节点 8 相连并且没有标记的元素,只有节点 9, 节点 9 入栈,并将其标记;
- 查找与当前栈顶元素节点 9 相连并且没有标记的元素,没有这样的元素,节点 9 出栈;
- 查看当前栈顶元素节点 8,类似,节点 8 出栈;
- 查看当前栈顶元素节点 6,类似,节点 6 出栈;
- 查看当前栈顶元素节点 4,类似,节点 4 出栈;
- 查看当前栈顶元素节点 3,类似,节点 3 出栈;
- 查看当前栈顶元素节点 2,类似,节点 2 出栈;
- 查看当前栈顶元素节点 1,类似,节点 1 出栈。
上边对这个栈的操作过程应该如下边所示:
(栈空)
节点 1
节点 1、节点 2
节点 1、节点 2、节点 3
节点 1、节点 2、节点 3、节点 4
节点 1、节点 2、节点 3、节点 4、节点 5
节点 1、节点 2、节点 3、节点 4
节点 1、节点 2、节点 3、节点 4、节点 6
节点 1、节点 2、节点 3、节点 4、节点 6、节点 7
节点 1、节点 2、节点 3、节点 4、节点 6
节点 1、节点 2、节点 3、节点 4、节点 6、节点 8
节点 1、节点 2、节点 3、节点 4、节点 6、节点 8、节点 9
节点 1、节点 2、节点 3、节点 4、节点 6、节点 8
节点 1、节点 2、节点 3、节点 4、节点 6
节点 1、节点 2、节点 3、节点 4
节点 1、节点 2、节点 3
节点 1、节点 2
节点 1
(栈空)
宽度优先搜索
BFS 的搜索过程要联系 队列 来理解,约定如下:
- 已经入队的节点要被标记为已经遍历;
- 第一个入队的是节点 1,将其作为最初的队首和队尾;
- 遍历与当前队首相连但未被标记的节点,按照数字大小依次入队,并且移动队尾;
- 队首移动到下一个元素。
例如对下边这个图:
graph TB
1((1))===2((2))===4((4))===8((8))
2((2))===5((5))===8((8))
1((1))===3((3))===6((6))===8((8))
6((6))===9((9))
3((3))===7((7))===9((9))
队列维护的情况如下(加粗的表示队首、斜体表示队尾):
- 1、2、3
- 1、2、3、4、5
- 1、2、3、4、5、6、7
- 1、2、3、4、5、6、7、8
- 1、2、3、4、5、6、7、8
- 1、2、3、4、5、6、7、8、9
- 1、2、3、4、5、6、7、8、9
- 1、2、3、4、5、6、7、8、9
- 1、2、3、4、5、6、7、8、9